Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding.
نویسندگان
چکیده
The Fe2+-dependent Fur protein serves as a negative regulator of iron uptake in bacteria. As only metallo-Fur acts as an autogeneous repressor, Fe2+scarcity would direct fur expression when continued supply is not obviously required. We show that in Escherichia coli post-transcriptional regulatory mechanisms ensure that Fur synthesis remains steady in iron limitation. Our studies revealed that fur translation is coupled to that of an upstream open reading frame (uof), translation of which is downregulated by the non-coding RNA (ncRNA) RyhB. As RyhB transcription is negatively controlled by metallo-Fur, iron depletion creates a negative feedback loop. RyhB-mediated regulation of uof-fur provides the first example for indirect translational regulation by a trans-encoded ncRNA. In addition, we present evidence for an iron-responsive decoding mechanism of the uof-fur entity. It could serve as a backup mechanism of the RyhB circuitry, and represents the first link between iron availability and synthesis of an iron-containing protein.
منابع مشابه
Effect of RyhB small RNA on global iron use in Escherichia coli.
RyhB is a noncoding RNA regulated by the Fur repressor. It has previously been shown to cause the rapid degradation of a number of mRNAs that encode proteins that utilize iron. Here we examine the effect of ectopic RyhB production on global gene expression by microarray analysis. Many of the previously identified targets were found, as well as other mRNAs encoding iron-binding proteins, bringin...
متن کاملA small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.
A small RNA, RyhB, was found as part of a genomewide search for novel small RNAs in Escherichia coli. The RyhB 90-nt RNA down-regulates a set of iron-storage and iron-using proteins when iron is limiting; it is itself negatively regulated by the ferric uptake repressor protein, Fur (Ferric uptake regulator). RyhB RNA levels are inversely correlated with mRNA levels for the sdhCDAB operon, encod...
متن کاملA small RNA promotes siderophore production through transcriptional and metabolic remodeling.
Siderophores are essential factors for iron (Fe) acquisition in bacteria during colonization and infection of eukaryotic hosts, which restrain iron access through iron-binding protein, such as lactoferrin and transferrin. The synthesis of siderophores by Escherichia coli is considered to be fully regulated at the transcriptional level by the Fe-responsive transcriptional repressor Fur. Here we ...
متن کاملImpact of Anaerobiosis on Expression of the Iron-Responsive Fur and RyhB Regulons
UNLABELLED Iron, a major protein cofactor, is essential for most organisms. Despite the well-known effects of O2 on the oxidation state and solubility of iron, the impact of O2 on cellular iron homeostasis is not well understood. Here we report that in Escherichia coli K-12, the lack of O2 dramatically changes expression of genes controlled by the global regulators of iron homeostasis, the tran...
متن کاملFur regulates acid resistance in Shigella flexneri via RyhB and ydeP.
Shigella flexneri requires iron for survival, and the genes for iron uptake and homeostasis are regulated by the Fur protein. Microarrays were used to identify genes regulated by Fur and to study the physiological effects of iron availability in S. flexneri. These assays showed that the expression of genes involved in iron acquisition and acid response was induced by low-iron availability and b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2007